Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Infect Dis Health ; 27(2): 81-95, 2022 05.
Article in English | MEDLINE | ID: covidwho-1768145

ABSTRACT

BACKGROUND: Millions of people have acquired and died from SARS-CoV-2 infection during the COVID-19 pandemic. Healthcare workers (HCWs) are required to wear personal protective equipment (PPE), including surgical masks and P2/N95 respirators, to prevent infection while treating patients. However, the comparative effectiveness of respirators and masks in preventing SARS-CoV-2 infection and the likelihood of experiencing adverse events (AEs) with wear are unclear. METHODS: Searches were carried out in PubMed, Europe PMC and the Cochrane COVID-19 Study Register to 14 June 2021. A systematic review of comparative epidemiological studies examining SARS-CoV-2 infection or AE incidence in HCWs wearing P2/N95 (or equivalent) respirators and surgical masks was performed. Article screening, risk of bias assessment and data extraction were duplicated. Meta-analysis of extracted data was carried out in RevMan. RESULTS: Twenty-one studies were included, with most having high risk of bias. There was no statistically significant difference in respirator or surgical mask effectiveness in preventing SARS-CoV-2 infection (OR 0.85, [95%CI 0.72, 1.01]). Healthcare workers experienced significantly more headaches (OR 2.62, [95%CI 1.18, 5.81]), respiratory distress (OR 4.21, [95%CI 1.46, 12.13]), facial irritation (OR 1.80, [95%CI 1.03, 3.14]) and pressure-related injuries (OR 4.39, [95%CI 2.37, 8.15]) when wearing respirators compared to surgical masks. CONCLUSION: The existing epidemiological evidence does not enable definitive assessment of the effectiveness of respirators compared to surgical masks in preventing infection. Healthcare workers wearing respirators may be more likely to experience AEs. Effective mitigation strategies are important to ensure the uptake and correct use of respirators by HCWs.


Subject(s)
COVID-19 , COVID-19/prevention & control , Humans , N95 Respirators/adverse effects , Pandemics/prevention & control , Personal Protective Equipment , SARS-CoV-2
3.
Pan Afr Med J ; 39: 203, 2021.
Article in English | MEDLINE | ID: covidwho-1404090

ABSTRACT

INTRODUCTION: the COVID-19 pandemic has necessitated the prolonged use of facemasks by healthcare workers. Facemask non-compliance has been largely blamed on discomfort associated with the mask, and apprehension regarding potential health hazards such as asphyxia from mask usage. We sought to evaluate the impact of different respiratory mask types on the comfort of healthcare workers and their arterial oxygen saturation during periods of active clinical duty. METHODS: we conducted a cross-sectional study on healthcare workers donning different types of facemasks in the normal course of duty. Objective non-invasive determination of arterial oxygen saturation of each participant was done using a portable pulse oximeter. Subjective self-assessment of global discomfort was scored by means of a 11-point numerical scale from 0 (no discomfort) to 10 (worst discomfort imaginable). The user's perceived elements of the discomfort were also evaluated. A statistical significance was accepted when P <0.05. RESULTS: seventy-six healthcare workers completed the study, and wore the masks for periods ranging from 68-480 minutes. The discomfort experienced with the use of the N95 mask; 4.3 (2.0) was greater than the surgical mask; 2.7 (1.8); P=0.001. No significant change in arterial oxygen saturation was observed with the use of either of the mask types. The tight strapping of the N95 mask was perceived as a contributor to the discomfort experienced with mask usage; P=0.009. CONCLUSION: the N95 masks imposed greater discomfort than the surgical masks, but neither of the masks impacted on the arterial oxygen saturation of the healthcare workers.


Subject(s)
COVID-19 , Health Personnel/psychology , Masks/adverse effects , Oxygen/metabolism , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , N95 Respirators/adverse effects , Oximetry , Time Factors
4.
PLoS One ; 16(2): e0247414, 2021.
Article in English | MEDLINE | ID: covidwho-1388900

ABSTRACT

BACKGROUND: Facemasks are recommended to reduce the spread of SARS-CoV-2, but concern about inadequate gas exchange is an often cited reason for non-compliance. RESEARCH QUESTION: Among adult volunteers, do either cloth masks or surgical masks impair oxygenation or ventilation either at rest or during physical activity? STUDY DESIGN AND METHODS: With IRB approval and informed consent, we measured heart rate (HR), transcutaneous carbon dioxide (CO2) tension and oxygen levels (SpO2) at the conclusion of six 10-minute phases: sitting quietly and walking briskly without a mask, sitting quietly and walking briskly while wearing a cloth mask, and sitting quietly and walking briskly while wearing a surgical mask. Brisk walking required at least a 10bpm increase in heart rate. Occurrences of hypoxemia (decrease in SpO2 of ≥3% from baseline to a value of ≤94%) and hypercarbia (increase in CO2 tension of ≥5 mmHg from baseline to a value of ≥46 mmHg) in individual subjects were collected. Wilcoxon signed-rank was used for pairwise comparisons among values for the whole cohort (e.g. walking without a mask versus walking with a cloth mask). RESULTS: Among 50 adult volunteers (median age 33 years; 32% with a co-morbidity), there were no episodes of hypoxemia or hypercarbia (0%; 95% confidence interval 0-1.9%). In paired comparisons, there were no statistically significant differences in either CO2 or SpO2 between baseline measurements without a mask and those while wearing either kind of mask mask, both at rest and after walking briskly for ten minutes. INTERPRETATION: The risk of pathologic gas exchange impairment with cloth masks and surgical masks is near-zero in the general adult population.


Subject(s)
COVID-19/prevention & control , Masks , Oxygen/metabolism , Pulmonary Ventilation/physiology , Adult , COVID-19/psychology , COVID-19/transmission , Carbon Dioxide/metabolism , Exercise/physiology , Female , Heart Rate/physiology , Humans , Hypoxia/etiology , Hypoxia/metabolism , Male , Masks/adverse effects , N95 Respirators/adverse effects , Rest/physiology , SARS-CoV-2/isolation & purification , Walking/physiology
7.
J Pediatr ; 237: 143-147, 2021 10.
Article in English | MEDLINE | ID: covidwho-1242546

ABSTRACT

OBJECTIVE: To assess whether use of an N95 mask by children is associated with episodes of desaturation or respiratory distress. STUDY DESIGN: Twenty-two healthy children were assigned at random to 1 of 2 groups: one group wearing N95 masks without an exhalation valve and the other group wearing N95 masks with an exhalation valve. We tracked changes in partial pressure of end-tidal carbon dioxide (PETCO2), oxygen saturation, pulse rate, and respiratory rate over 72 minutes of mask use. All subjects were monitored every 15 minutes, the first 30 minutes while not wearing a mask and the next 30 minutes while wearing a mask. They then performed a 12-minute walking test. RESULTS: The children did not experience a statistically significant change in oxygen saturation or pulse rate during the study. There were significant increases in respiratory rate and PETCO2 in the children wearing an N95 mask without an exhalation valve, whereas these increases were seen in the children wearing a mask with an exhalation valve only after the walking test. CONCLUSIONS: The use of an N95 mask could potentially cause breathing difficulties in children if the mask does not have an exhalation valve, particularly during a physical activity. We believe that wearing a surgical mask may be more appropriate for children.


Subject(s)
N95 Respirators/adverse effects , Respiratory Insufficiency/etiology , Biomarkers/metabolism , Carbon Dioxide/metabolism , Child , Child, Preschool , Exercise/physiology , Female , Heart Rate , Humans , Male , Oxygen/metabolism , Respiratory Function Tests , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/metabolism , Respiratory Rate , Risk Factors , Walk Test
8.
Med Hypotheses ; 146: 110411, 2021 01.
Article in English | MEDLINE | ID: covidwho-1225344

ABSTRACT

Many countries across the globe utilized medical and non-medical facemasks as non-pharmaceutical intervention for reducing the transmission and infectivity of coronavirus disease-2019 (COVID-19). Although, scientific evidence supporting facemasks' efficacy is lacking, adverse physiological, psychological and health effects are established. Is has been hypothesized that facemasks have compromised safety and efficacy profile and should be avoided from use. The current article comprehensively summarizes scientific evidences with respect to wearing facemasks in the COVID-19 era, providing prosper information for public health and decisions making.


Subject(s)
COVID-19/prevention & control , Masks , Models, Biological , Pandemics/prevention & control , SARS-CoV-2 , COVID-19/transmission , COVID-19/virology , Humans , Hypercapnia/etiology , Hypercapnia/physiopathology , Hypercapnia/psychology , Hypoxia/etiology , Hypoxia/physiopathology , Hypoxia/psychology , Masks/adverse effects , Masks/standards , Masks/virology , N95 Respirators/adverse effects , N95 Respirators/standards , N95 Respirators/virology , Respiration , Safety , Treatment Outcome
9.
JAMA Netw Open ; 4(4): e216857, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1192058

ABSTRACT

Importance: The COVID-19 pandemic has brought forth new challenges for health care workers, such as the daily use of personal protective equipment, including reusable facial respirators. Poor communication while wearing respirators may have fatal complications for patients, and no solution has been proposed to date. Objective: To examine whether use of an in-ear communication device is associated with improved communication while wearing different personal protective equipment (N95 mask, half-face elastomeric respirator, and powered air-purifying respirator [PAPR]) in the operating room. Design, Setting, and Participants: This quality improvement study was conducted in June 2020. Surgical residents from the Department of Otolaryngology-Head and Neck Surgery at McGill University in Montreal, Quebec, Canada, were recruited. All participants had normal hearing, were fluent in English, and had access to the operating rooms at the Royal Victoria Hospital. Exposures: All participants performed the speech intelligibility tasks with and without an in-ear communication device. Main Outcomes and Measures: Speech intelligibility was measured using a word recognition task (Modified Rhyme Test) and a sentence recognition task (AzBio Sentence Test). A percentage correct score (0% to 100%) was obtained for each speech intelligibility test. Listening effort was assessed using the NASA Task Load Index. An overall workload score, ranging from 0 points (low workload) to 100 points (high workload), was obtained. Results: A total of 12 participants were included (mean [SD] age, 31.2 [1.9] years; 8 women [66.7%]). AzBio Sentence Test results revealed that, while wearing the N95 mask, the mean (SD) speech intelligibility was 98.8% (1.8%) without the in-ear device vs 94.3% (7.4%) with the device. While wearing the half-face elastomeric respirator, the mean speech intelligibility was 58.5% (12.4%) without the in-ear device vs 90.8% (8.9%) with the device. While wearing the PAPR, the mean speech intelligibility was 84.6% (9.8%) without the in-ear device vs 94.5% (5.5%) with the device. Use of the in-ear device was associated with a significant improvement in speech intelligibility while wearing the half-face elastomeric respirator (32.3%; 95% CI, 23.8%-40.7%; P < .001) and the PAPR (9.9%; 95% CI, 1.4%-18.3%; P = .01). Furthermore, use of the device was associated with decreased listening effort. The NASA Task Load Index results reveal that, while wearing the N95 mask, the mean (SD) overall workload score was 12.6 (10.6) points without the in-ear device vs 17.6 (9.2) points with the device. While wearing the half-face elastomeric respirator, the mean overall workload score was 67.7 (21.6) points without the in-ear device vs 29.3 (14.4) points with the in-ear device. While wearing the PAPR, the mean overall workload score was 42.2 (18.2) points without the in-ear device vs 23.8 (12.8) points with the in-ear device. Use of the in-ear device was associated with a significant decrease in overall workload score while wearing the half-face elastomeric respirator (38.4; 95% CI, 23.5-53.3; P < .001) and the PAPR (18.4; 95% CI, 0.4-36.4; P = .04). Conclusions and Relevance: This study found that among participants using facial respirators that impaired communication, a novel in-ear device was associated with improved communication and decreased listening effort. Such a device may be a feasible solution for protecting health care workers in the operating room while allowing them to communicate safely, especially during the COVID-19 pandemic.


Subject(s)
COVID-19 , Communication , Hearing Aids/standards , Hearing , N95 Respirators/adverse effects , N95 Respirators/standards , Operating Rooms , Respiratory Protective Devices/adverse effects , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Canada , Female , Health Personnel , Humans , Infection Control/instrumentation , Male , Operating Rooms/organization & administration , Operating Rooms/standards , Quality Improvement , SARS-CoV-2 , Simulation Training , Speech Discrimination Tests/methods
10.
Int Arch Occup Environ Health ; 94(7): 1627-1636, 2021 10.
Article in English | MEDLINE | ID: covidwho-1107813

ABSTRACT

OBJECTIVES: During the COVID-19 pandemic, healthcare professionals are recommended to use PPE to prevent the transmission of disease. Healthcare workers who use N95 FFR, which has an important place, experience complaints such as headache and dizziness. In this study, we plan to find the cause of these complaints and aim to clarify whether they are associated with the use of N95 mask. METHOD: Healthcare workers first put on a surgical mask for at least 1 h and a maximum of 4 h, this process was then repeated on another day with the same workers wearing N95 masks. After removing the mask, capillary blood gases were taken and a questionnaire was given. RESULTS: Thirty-four participants over the age of 18 were included in the study; 19 participants were female (56%) and 15 male (44%). The results of the capillary blood gas analysis after the use of surgical mask and N95 mask, respectively: pH: 7.43 ± 0.03; 7.48 ± 0.04 (p < 0.001); pCO2: 37.33 ± 8.81; 28.46 ± 7.77 mmHg (p < 0.001); HCO3: 24.92 ± 2.86; 23.73 ± 3.29 mmol/L (p = 0.131); Base excess (BE): 1.40 (- 3.90-3.10); - 2.68 (- 4.50-1.20) [median (Q1-Q3)] (p = 0.039); lactate: 1.74 ± 0.68; 1.91 ± 0.61 (p = 0314). Headache, attention deficit and difficulty in concentrating were significantly higher after using N95 mask. CONCLUSION: Respiratory alkalosis and hypocarbia were detected after the use of N95. Acute respiratory alkalosis can cause headache, anxiety, tremor, muscle cramps. In this study, it was quantitatively shown that the participants' symptoms were due to respiratory alkalosis and hypocarbia.


Subject(s)
COVID-19/epidemiology , Dizziness/etiology , Headache/etiology , N95 Respirators/adverse effects , Adult , Age Factors , Blood Gas Analysis , COVID-19/prevention & control , Female , Health Personnel , Hospitals, University , Humans , Hydrogen-Ion Concentration , Male , Masks/adverse effects , Pandemics , SARS-CoV-2 , Sex Factors , Socioeconomic Factors
11.
PLoS One ; 16(2): e0246842, 2021.
Article in English | MEDLINE | ID: covidwho-1099924

ABSTRACT

Face masks are an important tool for preventing the spread of COVID-19. However, it is unclear how different types of masks affect speech recognition in different levels of background noise. To address this, we investigated the effects of four masks (a surgical mask, N95 respirator, and two cloth masks) on recognition of spoken sentences in multi-talker babble. In low levels of background noise, masks had little to no effect, with no more than a 5.5% decrease in mean accuracy compared to a no-mask condition. In high levels of noise, mean accuracy was 2.8-18.2% lower than the no-mask condition, but the surgical mask continued to show no significant difference. The results demonstrate that different types of masks generally yield similar accuracy in low levels of background noise, but differences between masks become more apparent in high levels of noise.


Subject(s)
Auditory Perception/physiology , Masks , Speech Perception/physiology , Adult , COVID-19/prevention & control , COVID-19/psychology , COVID-19/transmission , Female , Humans , Language , Male , Masks/adverse effects , N95 Respirators/adverse effects , Noise , SARS-CoV-2/isolation & purification , Speech/physiology
12.
BMJ Open ; 11(2): e041880, 2021 02 18.
Article in English | MEDLINE | ID: covidwho-1090935

ABSTRACT

OBJECTIVES: To explore the association between N95 respirator wearing and device-related pressure injury (DRPI) and to provide a basis for protecting medical staff from skin injuries. DESIGN: A cross-sectional, multicentre study. SETTING AND PARTICIPANTS: Medical staff of 60 hospitals were selected from 145 designated medical institutions located in the epidemic area where the patients with COVID-19 were treated in China. RESULTS: In total, 1761 respondents wore N95 respirators (use alone 20.8%; combination use 79.2%), and the prevalence of DRPI was 59.2% (95% CI 56.93 to 61.53). A daily wearing time of >4 hours (OR 1.62, 95% CI 1.11 to 2.35), wearing a N95 respirator in combination with goggles both with the presence of sweating (OR 13.40, 95% CI 7.34 to 23.16) and without the presence of sweating (OR 0.80, 95% CI 0.56 to 1.14) and wearing only a N95 respirator with the presence of sweating (OR 9.60, 95% CI 7.00 to 13.16) were associated with DRPI. A correspondence analysis indicated that if there was no sweating, regardless of whether the N95 respirator was worn by itself or in combination with goggles, single-site DRPI mainly occurred on the nose bridge, cheek and auricle. If there was sweating present, regardless of whether the N95 was worn by itself or in combination with goggles, multiple DRPI sites occurred more often on the face. CONCLUSIONS: The prevalence of DRPI among medical staff caused by N95 respirators was very high, which was mainly associated with a longer daily wearing time and interaction with sweating. The nasal bridge, cheeks and auricles were the primary protection locations found.


Subject(s)
COVID-19/prevention & control , N95 Respirators/adverse effects , Occupational Exposure/prevention & control , Occupational Injuries/epidemiology , Adult , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Pressure , Sweating
13.
Dermatitis ; 32(1): 57-62, 2021.
Article in English | MEDLINE | ID: covidwho-1066443

ABSTRACT

BACKGROUND: Coronavirus disease 2019 has rapidly spread all over the world. Personal protective equipment (PPE) including masks and gloves is needed to avoid transmission. Adverse skin reactions associated with PPE have been described, but there is no information regarding objective measures to assess skin impairment related to PPE. OBJECTIVE: The aim of the study was to evaluate the impact of using facial mask and nitrile gloves on epidermal barrier function and skin homeostasis. METHODS: A cross-sectional study was designed. Thirty-four health care workers wearing nitrile gloves and a mask for 2 hours were included. Transepidermal water loss, stratum corneum hydration, erythema, and temperature were measured. RESULTS: Transepidermal water loss (31.11 vs 14.24 g·m-2·h-1), temperature (33.29°C vs 32.57°C), and erythema were significantly greater at the area covered by gloves compared with the noncovered area. Transepidermal water loss (22.82 vs 13.69 g·m-2·h-1), temperature, and erythema (411.43 vs 335.52 arbitrary units) were significantly increased at the area covered by mask, whereas stratum corneum hydration was lower. Transepidermal water loss was greater at the area covered by a surgical mask than at a filtering respirator mask coded filtering facepiece 2 (27.09 vs 18.02 g·m-2·h-1, P = 0.034). CONCLUSIONS: Skin homeostasis and epidermal barrier function may be impaired by gloves and mask use. High-quality PPE should be provided, and adequate skin prevention measures should be implemented to reduce epidermal barrier damage.


Subject(s)
COVID-19/prevention & control , Epidermis/physiopathology , Erythema/etiology , Gloves, Surgical/adverse effects , Health Personnel , N95 Respirators/adverse effects , Skin Temperature/physiology , Water Loss, Insensible/physiology , Adult , Female , Humans , Male , Masks/adverse effects , Middle Aged , Nitriles , Occupational Exposure , Personal Protective Equipment/adverse effects , SARS-CoV-2 , Skin/physiopathology
14.
Healthc Q ; 23(4): 35-38, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1040174

ABSTRACT

With the global outbreak of the COVID-19 pandemic, hospitals in Canada and around the world have been forced to consider conservation strategies to ensure continued availability of personal protective equipment (PPE) for healthcare providers. To mitigate critical PPE shortages, Sinai Health System (Sinai Health), a large academic healthcare institution in Canada, has developed and operationalized a standard operating procedure for the collection, decontamination and reuse of N95 respirators and other single-use PPE using a vaporized hydrogen peroxide decontamination method. Sinai Health has incorporated stringent quality assurance steps to ensure that the N95 respirators are successfully decontaminated without deformation and are safe to use.


Subject(s)
Decontamination/methods , Equipment Contamination/prevention & control , Equipment Reuse , Equipment and Supplies, Hospital , N95 Respirators , COVID-19/prevention & control , Cross Infection/prevention & control , Equipment Reuse/standards , Equipment and Supplies, Hospital/adverse effects , Equipment and Supplies, Hospital/standards , Equipment and Supplies, Hospital/virology , Humans , N95 Respirators/adverse effects , N95 Respirators/standards , N95 Respirators/virology , SARS-CoV-2
15.
J Neurol Phys Ther ; 45(1): 36-40, 2021 01.
Article in English | MEDLINE | ID: covidwho-1035551

ABSTRACT

Individuals with balance and gait problems encounter additional challenges navigating this post-coronavirus disease-2019 (COVID-19) world. All but the best fitting facemasks partially obscure the lower visual field. Facemask use by individuals with balance and gait problems has the potential to further compromise walking safety. More broadly, as the world reopens for business, balance and gait testing in clinics and research laboratories will also be impacted by facemask use. Here, we highlight some of the challenges faced by patients, clinicians, and researchers as they return to "normal" after COVID-19.Video Abstract is available for insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A328).


Subject(s)
COVID-19/prevention & control , Gait Disorders, Neurologic , Masks/adverse effects , N95 Respirators/adverse effects , Postural Balance , Spatial Navigation , Visual Fields , Aged , Female , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Postural Balance/physiology , Spatial Navigation/physiology , Visual Fields/physiology
16.
Respir Care ; 65(5): 658-664, 2020 May.
Article in English | MEDLINE | ID: covidwho-993914

ABSTRACT

BACKGROUND: The N95 filtering facepiece respirator (FFR) is the most popular individual protective device to reduce exposure to particulate matter. However, concerns have been raised with regard to its use because it can increase respiratory resistance and dead space. Therefore, this study assessed the safety of N95 use in patients with COPD and air-flow limitation. METHODS: This prospective study was performed at a tertiary hospital and enrolled 97 subjects with COPD. The subjects were monitored for symptoms and physiologic variables during a 10-min rest period and 6-min walking test while wearing an N95. RESULTS: Of the 97 subjects, 7 with COPD did not wear the N95 for the entire test duration. This mask-failure group showed higher British modified Medical Research Council dyspnea scale scores and lower FEV1 percent of predicted values than did the successful mask use group. A modified Medical Research Council dyspnea scale score ≥ 3 (odds ratio 167, 95% CI 8.4 to >999.9; P = .008) or a FEV1 < 30% predicted (odds ratio 163, 95% CI 7.4 to >999.9; P = .001) was associated with a risk of failure to wear the N95. Breathing frequency, blood oxygen saturation, and exhaled carbon dioxide levels also showed significant differences before and after N95 use. CONCLUSIONS: This study demonstrated that subjects with COPD who had modified Medical Research Council dyspnea scale scores ≥ 3 or FEV1 < 30% predicted wear N95s only with care.


Subject(s)
N95 Respirators/adverse effects , Pulmonary Disease, Chronic Obstructive/physiopathology , Aged , Aged, 80 and over , Dyspnea/physiopathology , Female , Humans , Male , Middle Aged , Particulate Matter , Prospective Studies , Pulmonary Disease, Chronic Obstructive/epidemiology , Walk Test
17.
Infect Control Hosp Epidemiol ; 42(6): 678-687, 2021 06.
Article in English | MEDLINE | ID: covidwho-932192

ABSTRACT

BACKGROUND: Critical shortages of personal protective equipment, especially N95 respirators, during the coronavirus disease 2019 (COVID-19) pandemic continues to be a source of concern. Novel methods of N95 filtering face-piece respirator decontamination that can be scaled-up for in-hospital use can help address this concern and keep healthcare workers (HCWs) safe. METHODS: A multidisciplinary pragmatic study was conducted to evaluate the use of an ultrasonic room high-level disinfection system (HLDS) that generates aerosolized peracetic acid (PAA) and hydrogen peroxide for decontamination of large numbers of N95 respirators. A cycle duration that consistently achieved disinfection of N95 respirators (defined as ≥6 log10 reductions in bacteriophage MS2 and Geobacillus stearothermophilus spores inoculated onto respirators) was identified. The treated masks were assessed for changes to their hydrophobicity, material structure, strap elasticity, and filtration efficiency. PAA and hydrogen peroxide off-gassing from treated masks were also assessed. RESULTS: The PAA room HLDS was effective for disinfection of bacteriophage MS2 and G. stearothermophilus spores on respirators in a 2,447 cubic-foot (69.6 cubic-meter) room with an aerosol deployment time of 16 minutes and a dwell time of 32 minutes. The total cycle time was 1 hour and 16 minutes. After 5 treatment cycles, no adverse effects were detected on filtration efficiency, structural integrity, or strap elasticity. There was no detectable off-gassing of PAA and hydrogen peroxide from the treated masks at 20 and 60 minutes after the disinfection cycle, respectively. CONCLUSION: The PAA room disinfection system provides a rapidly scalable solution for in-hospital decontamination of large numbers of N95 respirators during the COVID-19 pandemic.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , Disinfectants/therapeutic use , Equipment Contamination/prevention & control , N95 Respirators/virology , Peracetic Acid/therapeutic use , SARS-CoV-2 , Aerosols , Cross Infection/prevention & control , Cross Infection/virology , Disinfectants/administration & dosage , Geobacillus stearothermophilus , Humans , Hydrogen Peroxide/administration & dosage , Hydrogen Peroxide/therapeutic use , Levivirus , N95 Respirators/adverse effects , N95 Respirators/microbiology , Peracetic Acid/administration & dosage
19.
Dermatol Ther ; 33(6): e14528, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-917742

ABSTRACT

Given the current lack of a therapeutic vaccine for coronavirus disease 2019 (COVID-19), preventive measures including mask wearing are crucial in slowing the transmission of cases. However, prolonged wearing of protective respirators, medical and fabric masks can easily generate excessive sweating, moisture and friction. Closed and warm environments heighten the skin's permeability and sensitivity to physical or chemical irritants, leading to chronic cumulative irritant contact dermatitis or, rarely, even allergic contact dermatitis. Although not representing a life-threatening condition, contact dermatitis can have a significant impact on emergency management, as it is potentially able to reduce work performance and create emotional discomfort due to the involvement of evident body areas. To minimize the skin breakdown, adherence to standards on wearing protective and safe equipments and avoidance of overprotection should be performed. At the same time, some measures of skin care are recommended. Here, we offer some tips on how to prevent and manage contact dermatitis due to masks not only in health care workers, but also in the general population during this COVID-19 outbreak.


Subject(s)
COVID-19/prevention & control , Dermatitis, Contact/prevention & control , Dermatitis, Occupational/prevention & control , Facial Dermatoses/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Inhalation Exposure/prevention & control , Masks/adverse effects , N95 Respirators/adverse effects , Skin Care , Administration, Cutaneous , Adrenal Cortex Hormones/administration & dosage , Anti-Allergic Agents/administration & dosage , Anti-Bacterial Agents/administration & dosage , COVID-19/transmission , Dermatitis, Contact/diagnosis , Dermatitis, Contact/etiology , Dermatitis, Occupational/diagnosis , Dermatitis, Occupational/etiology , Facial Dermatoses/diagnosis , Facial Dermatoses/etiology , Humans , Inhalation Exposure/adverse effects , Occupational Health , Protective Factors , Risk Assessment , Risk Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL